A LEVEL 9702 **PHYSICS TOPICAL PAPER 1** 2016 - 2022

Compiled and Arranged by:

Shahzad Zia

0300 4173806 / 0331 0408866

STUDENTS RESOURCE

Airport Road : Shop 23-24, Basement Faysal Bank, Near Yasir Broast, Airport Road, Lahore. Mob: 0321-4567519 Tel: 042-35700707

studentsresource.net

DHA Ph-V: Plaza No. 52-CCA, Ph-5 DHA Lahore Cantt.

Mob: 0321-4924519 Tel: 042-37180077

💟 studentsresourc

Johar Town : Opp. Beaconhouse JTC Adjacent Jamia Masjid PIA Society Shadewal Chowk, Johar Town Lahore. Mob: 0313-4567519 Tel: 042-35227007

f /students.resource

Bahria Town: 70 - Umer Block Main Boulevard Commercial Area Bahria Town Lahore. Mob: 0315-4567519 Tel: 042-35342995

Students.resource

Book Title:	AS Level Physics Topical Paper 1 MCQs
Syllabus Code	9702
Compiler:	Shahzad Zia +92-3004173806
Syllabus:	Syllabus 2022-2024
Edition:	2023
Published by:	STUDENTS Airport Road 0423-5700707
Price:	ÁG I IEEBË

COPYRIGHT ©STUDENTS RESOURCE[®]2023

The rights of Students Resource being Publisher of this book has been asserted by him in accordance with the Copy Right Ordinance 1962 of Pakistan.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Students Resource or under licence from the Registrar Copyright from Intellectual Property Organization Pakistan.

The syllabus contents and questions from past papers used herein are the property of Cambridge Assessment International Education (CAIE). The use of syllabus and questions from past papers used in this book does not west in the author or publisher any copyright ownership, nor does the use of CAIE material imply any affiliation with CAIE.

Any individual or institution violating the copyrights will be prosecuted in the court of law under the lex-fori of Pakistan at his/their expense.

No further notes and legal warning would be issued for any kind of legal activity.

Legal Advisor

Preface

A Level Physics Paper 1 Topical Pastpaper Questions provide complete practice and revision for students taking A Level Physics (9702) Examination to be held in 2022 and onwards.

It has been an established fact that the questions from past papers provide the students with the best practice. They are able to apply what they have learnt and therefore, can assess their knowledge of the subject. This book contains

- more than 2000 Questions carefully selected from 2016 to 2022 past papersincluding Feb/March series.
- The topics are listed according to new syllabus for 2022 and onwards.
- The questions and parts from abandoned topics have been removed.
- Answer Key is provided at the end of the book for reference.

Shahzad Zia 0300 4173806 0331 0408866

Acknowledgement

The syllabus, contents and questions from past papers used herein are the property of **Cambridge Assessment International Education (CAIE)**.

The use of questions from past papers used in this book does not vest in the author or publisher any copyright ownership, nor does the use of **Cambridge Assessment International Education (CAIE)** material imply any affiliation with **Cambridge Assessment International Education (CAIE)**.

Contents

	Unit	Page No.
1	Physical Quantities and Units 1.1 Physical Quantities 1.2 SI Units 1.3 Errors and Uncertainties 1.4 Scalars and Vectors	13 20 29 47
2	Kinematics 2.1 Equations of Motion 2.2 Projectile Motion	64 97
3	Dynamics3.1 Momentum and Newton's Laws of Motion3.2 Non-Uniform Motion3.3 Linear Momentum and its Conservation	108 123 139
4	Forces, Density and Pressure4.1 Turning Effects of Forces4.2 Equilibrium of Forces4.3 Density and Pressure	157 174 202
5	 Work, Energy and Power 5.1 Energy Conservation 5.2 Gravitational Potential Energy and Kinetic Energy 	226 250
6	Deformation of Solids6.1 Stress and Strain6.2 Elastic and Plastic Behaviour	267 284
7	Waves7.1Progressive Waves7.2Transverse and Longitudinal Waves7.3Doppler Effect for Sound Waves7.4Electromagnetic Spectrum7.5Polarisation	305 324 343 358 371

Unit	Page No.
8 Superposition	
8.1 Stationary Waves	372
8.2 Diffraction	395
8.3 Interference	409
8.4 The Diffraction Grating	429
9 Electricity	
9.1 Electric Current	443
9.2 Potential Difference and Power	456
9.3 Resistance and Resistivity	471
10 D.C. Circuits	
10.1 Practical Circuits	488
10.2 Kirchhoff's Laws	513
10.3 Potential Dividers	529
11 Particle Physics	
11.1 Atoms, Nuclei and Radiation	553
11.2 Fundamental Particles	573
Answer Key	585

Data	
acceleration of free fall	$g = 9.81 \mathrm{m s^{-2}}$
speed of light in free space	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
elementary charge	$e = 1.60 \times 10^{-19} \text{C}$
unified atomic mass unit	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$
rest mass of proton	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
rest mass of electron	$m_{\rm e}^{}$ = 9.11 × 10 ⁻³¹ kg
Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$
permittivity of free space	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
	$(\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \mathrm{mF^{-1}})$
Planck constant	$h = 6.63 \times 10^{-34} \mathrm{Js}$
Stefan–Boltzmann constant	σ = 5.67 × 10 ⁻⁸ W m ⁻² K ⁻⁴

Formulae

uniformly accelerated motion	$s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$
hydrostatic pressure	$\Delta p = \rho g \Delta h$
upthrust	$F = \rho g V$
Doppler effect for sound waves	$f_{\rm o} = \frac{f_{\rm s} v}{v \pm v_{\rm s}}$
electric current	I = Anvq
resistors in series	$R = R_1 + R_2 + \dots$
resistors in parallel	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

gravitational potential	$\phi = -\frac{GM}{r}$
gravitational potential energy	$E_{\rm P} = -\frac{GMm}{r}$
pressure of an ideal gas	$p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle$
simple harmonic motion	$a = -\omega^2 x$
velocity of particle in s.h.m.	$v = v_0 \cos \omega t$ $v = \pm \omega \sqrt{(x_0^2 - x^2)}$
electric potential	$V = \frac{Q}{4\pi\varepsilon_0 r}$
electrical potential energy	$E_{\rm P} = \frac{Qq}{4\pi\varepsilon_0 r}$
capacitors in series	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
capacitors in parallel	$C = C_1 + C_2 + \dots$
discharge of a capacitor	$x = x_0 e^{-\frac{t}{RC}}$
Hall voltage	$V_{\rm H} = \frac{BI}{ntq}$
alternating current/voltage	$x = x_0 \sin \omega t$
radioactive decay	$x = x_0 e^{-\lambda t}$
decay constant	$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$
intensity reflection coefficient	$\frac{I_{\rm R}}{I_0} = \frac{(Z_1 - Z_2)^2}{(Z_1 + Z_2)^2}$
Stefan–Boltzmann law	$L = 4\pi\sigma r^2 T^4$
Doppler redshift	$\frac{\Delta\lambda}{\lambda}\approx\frac{\Delta f}{f}\approx\frac{v}{c}$

Circuit Symbols

The following table gives a guide to the circuit symbols that may be used in examination papers.

cell	-	switch	
battery of cells		earth	
power supply	<u> </u>	electric bell	$\widehat{\Pi}$
a.c. power supply	$-\circ \sim \circ$	buzzer	\square
junction of conductors	_ _	microphone	\square
lamp	$-\otimes$ -	loudspeaker	
fixed resistor	- <u> </u>	motor	<u>—(M)</u> —
variable resistor		generator	G
thermistor		ammeter	—(A)—
light-dependent resistor		voltmeter	—(v)—
heater		galvanometer	(†)
potentiometer		oscilloscope	
diode		capacitor	
light-emitting diode			

Summary of Key Quantities, Symbols and Units

The list below is intended as a guide to the more important quantities which might be encountered in teaching and used in question papers.

This list is for use in both AS Level and full A Level qualifications.

Quantity	Usual symbols	Usual unit
Base quantities		
mass	т	kg
length	1	m
time	t	S
electric current	Ι	A
thermodynamic temperature	Т	К
amount of substance	n	mol
Other quantities		
acceleration	a	m s ⁻²
acceleration of free fall	g	m s ⁻²
activity of radioactive source	Α	Вq
amplitude	<i>x</i> ₀	m
angle	θ	°, rad
angular displacement	θ	°, rad
angular frequency	ω	rad s ⁻¹
angular speed	ω	rad s ⁻¹
angular velocity	ω	rad s ⁻¹
area	Α	m ²
atomic mass	m _a	kg, u
attenuation/absorption coefficient	μ	m^{-1}
Avogadro constant	N _A	mol ⁻¹
Boltzmann constant	k	J K ^{−1}
capacitance	С	F
Celsius temperature	heta	°C
decay constant	λ	s ⁻¹
density	ρ	kg m ⁻³
displacement	S, X	m
distance	d	m
efficiency	η	
electric charge	q, Q	С
electric field strength	Ε	NC^{-1} , Vm^{-1}
electric potential	V	V
electric potential difference	V	V
electromotive force	Ε	V
electron mass	m _e	kg, u
elementary charge	e	C

Quantity	Usual symbols	Usual unit
energy	E, U, W	J
force	F	N
frequency	f	Hz
gravitational constant	G	Nm ² kg ⁻²
gravitational field strength	g	N kg ⁻¹
gravitational potential	ϕ	J kg ⁻¹
half-life	$t_{\frac{1}{2}}$	S
Hall voltage	V _H	V
heating	q, Q	J
Hubble constant	H _o	s ⁻¹
intensity	I	W m ⁻²
internal energy change	ΔU	J
kinetic energy	Ε _K	J
luminosity	L	W
magnetic flux	Φ	Wb
magnetic flux density	В	Т
mean-square speed	< <i>c</i> ² >	$m^{2}s^{-2}$
molar gas constant	R	Jmol ⁻¹ K ⁻¹
moment of force	Т	Nm
momentum	Ρ	N s
neutron mass	m _n	kg, u
neutron number	Ν	
nucleon number	A	
number	N, n, m	
number density (number per unit volume)	n	m^{-3}
period	Т	S
permeability of free space	μ_{0}	Hm ⁻¹
permittivity of free space	ε_0	Fm^{-1}
phase difference	ϕ	°, rad
Planck constant	h	Js
potential energy	E _P	J
power	Р	W
pressure	Ρ	Ра
proton mass	m _p	kg, u
proton number	Ζ	
radiant flux intensity	F	W m ⁻²
resistance	R	Ω
resistivity	ρ	Ωm

Quantity	Usual symbols	Usual unit
specific acoustic impedance	Ζ	kg m ⁻² s ⁻¹
specific heat capacity	С	$J kg^{-1} K^{-1}$
specific latent heat	L	J kg ⁻¹
speed	U, V, W, C	$m s^{-1}$
speed of electromagnetic waves	с	m s ⁻¹
spring constant	k	Nm^{-1}
Stefan-Boltzmann constant	σ	$W m^{-2} K^{-4}$
strain	3	
stress	σ	Pa
time constant	τ	S
torque	Т	Nm
velocity	U, V, W, C	$m s^{-1}$
volume	V, v	m ³
wavelength	λ	m
weight	W	Ν
work	w, W	J
work function energy	Φ	J
Young modulus	E	Ра

Command Words

Command words and their meanings help candidates know what is expected from them in the exam. The table below includes command words used in the assessment for this syllabus. The use of the command word will relate to the subject context.

Command word	What it means
Calculate	work out from given facts, figures or information
Comment	give an informed opinion
Compare	identify/comment on similarities and/or differences
Define	give precise meaning
Determine	establish an answer using the information available
Explain	set out purposes or reasons / make the relationships between things evident / provide why and/or how and support with relevant evidence
Give	produce an answer from a given source or recall/memory
Identify	name/select/recognise
Justify	support a case with evidence/argument
Predict	suggest what may happen based on available information
Show (that)	provide structured evidence that leads to a given result
Sketch	make a simple freehand drawing showing the key features
State	express in clear terms
Suggest	apply knowledge and understanding to situations where there are a range of valid responses in order to make proposals

Other Resources by the Author

O Level Physics Topical MCQs Self Tests Book Code: 717 Published By: Students Resource

O Level Physics Topical (ATP) Book Code: 714 Published By: Students Resource

IGCSE Physics Topical MCQs (P2) Book Code: 751 Published By: Students Resource

IGCSE Physics Topical Questions (P4) Book Code: 752 Published By: Students Resource

FOR HOME DELIVERY CALL/WHATSAPP US AT +92 331-0408866 / +92 0321 4567519

1.1 Physical Quantities

2016

1 A lift is supported by two steel cables, each of length 10 m and diameter 0.5 cm.

The cables extend by 1 mm when a man of mass 80 kg steps into the lift. What is the best estimate of the value of the Young modulus of the steel?

- $\begin{array}{ccc} \textbf{A} & 2\times 10^{10}\,N\,m^{-2} & \textbf{C} & 2\times 10^{11}\,N\,m^{-2} \\ \textbf{B} & 4\times 10^{10}\,N\,m^{-2} & \textbf{D} & 4\times 10^{11}\,N\,m^{-2} \end{array}$
- 2 Which quantity with its unit is correct?
 - **A** acceleration of a bicycle = $1.4 \,\mathrm{m\,s^{-1}}$
 - **B** electric current in a lamp = 0.25 As^{-1}
 - **C** electric potential difference across a battery = 8.0 J C^{-1}
 - **D** kinetic energy of a car = 4500 N m^{-1}

(M/J/2016/P12/Q.1)

(M/J/2016/P11/Q.3)

1.	1. Physical Quantities and Units					1.1 P	1.1 Physical Quantities				
_					2	2017	7				
1 Which expression has the same SI base units as pressure?											
	Α	force length × spee	ed	$\mathbf{B} \frac{\text{force}}{\text{length} \times \mathbf{C}}$	e time	С	mass length × (ti	me	<u>)</u> 2 D	$\frac{\text{mass} \times (\text{time})^2}{\text{length}}$	-
										(F/M/2017/P	12/Q.1)
2	Wh	nat is an approx	ximate	value for the	speed	of sou	und in air?				
	Α	$30{\rm ms^{-1}}$	В	$300{\rm ms^{-1}}$	С	3000	$00{ m ms^{-1}}$	D	300 000 00	00 m s ⁻¹	
										(F/M/2017/P	12/Q.2)

3 A student creates a table to show reasonable estimates of some physical quantities. Which row is **not** a reasonable estimate?

	quantity	value
Α	current in a fan heater	12 A
в	mass of an adult person	70 kg
С	speed of an Olympic sprint runner	10 m s ⁻¹
D	water pressure at the bottom of a garden pond	10 ⁶ Pa

(M/J/2017/P11/Q.1)

4 What is the approximate average speed of a winning female Olympic athlete running a 100m race?

A 6ms^{-1} **B** 9ms^{-1} **C** 12ms^{-1} **D** 15ms^{-1}

(M/J/2017/P12/Q.1)

5 What is the best estimate of the kinetic energy of a family car travelling at 50 km h^{-1} ?

 $\label{eq:alpha} \mbox{A} \quad 1.5 \times 10^3 \, \mbox{J} \qquad \mbox{B} \quad 1.5 \times 10^5 \, \mbox{J} \qquad \mbox{C} \quad 1.5 \times 10^7 \, \mbox{J} \qquad \mbox{D} \quad 1.5 \times 10^9 \, \mbox{J}$

(M/J/2017/P13/Q.1)

- 6 What is a typical value of the wavelength of a microwave travelling in a vacuum?
 - A 3000000 pm B 30 nm C 30000 μm D 3000 mm

(O/N/2017/P11/Q.4)

DEPTS RES

9

1 A sheet of gold leaf has a thickness of $0.125 \,\mu$ m. A gold atom has a radius of 174 pm. Approximately how many layers of atoms are there in the sheet?

2018

A 4 **B** 7 С 400 **D** 700

(M/J/2018/P12/Q.1)

- 2 What is the best way of describing a physical quantity?
 - A a quantity with a magnitude and a direction but no unit
 - **B** a quantity with a magnitude and a unit
 - **C** a quantity with a magnitude but no direction
 - **D** a quantity with a unit but no magnitude

(M/J/2018/P13/Q.1)

The radius of the Earth is approximately 6.4×10^6 m, and the radius of the Moon is approximately 3 1.7×10^6 m. A student wishes to build a scale model of the Solar System in the classroom, using a football of radius 0.12 m to represent the Earth.

Which object would best represent the Moon?

A basketball **B** cherry С golf ball **D** tennis ball

(O/N/2018/P11/Q.1)

A car is travelling at a speed of $20 \,\mathrm{m\,s^{-1}}$. The table contains values for the kinetic energy and the 4 momentum of the car.

Which values are reasonable estimates?

	kinetic energy / J	momentum /kgms ⁻¹
Α	$3 imes 10^5$	3×10^4
в	$3 imes 10^5$	$5 imes 10^{6}$
С	2×10^7	$3 imes 10^4$
D	2×10^7	$5 imes 10^{6}$

(O/N/2018/P12/Q.1)

- Which statement is **not** a reasonable estimate? 5
 - **A** Atmospheric pressure at sea level is about 1×10^5 Pa.
 - **B** Light takes 5×10^2 s to reach us from the Sun.
 - **C** The frequency of ultraviolet light is 3×10^{12} Hz.
 - **D** The lifespan of a man is about 2×10^9 s.

UNERTS RESOURCE

ZV.

					2	2019			
1	Wł	nat is equivaler	nt to 20	000 microvo	olts?				
	Α	$2\mu JC^{-1}$	В	2 mV	С	2 pV	D	2000 mV	
	•							_3	(M/J/2019/P12/Q.1)
2	Os Wł	mium, a natur nat is also a va	ally oc alue of	curring elen the densitv	nent, has of osmiu	a density of m?	° 23 000 k	(g m ⁻ °.	
	Α	2.3×10^4 µg (cm ⁻³	,	С	$2.3 \text{kg} \text{cm}^{-3}$	3		
	в	2.3×10^4 g cr	m ⁻³		D	2.3 × 10 ^{−2} l	kg cm ^{−3}		
		-					•		(M/J/2019/P13/Q.2)
3	Wł du	nat is the appr ring a 100 m ra	roximat ace?	te kinetic e	nergy of	an Olympic	athlete v	vhen running	g at maximum speed
	Α	400 J	В	4000 J	С	40 000 J	D	400 000 J	
	_						1.0		(M/J/2019/P13/Q.4)
4	+0 ▲	r which quanti	ty is the	e magnitude	e a reaso	nable estima	ate?		
	A	trequency of	a radio	o wave	500 pH	Z			
	В	the Young m		of a motal	500 µg	~			
	С П	wavelength	of gree	n light	500 KPa	a			
	U	wavelength	or gree	in light	5001111				(O/N/2019/P11/Q.1)
5	A c Wł	cyclist has a sp nich statement	beed of does i	f 5 m s ^{−1} and n ot give a r	d a small easonabl	car has a sp le estimate?	eed of 1	2 m s ⁻¹ .	
	Α	The kinetic e	energy	of the cyclis	st is 1 × 1	0 ³ J.			
	в	The kinetic e	energy	of the car is	3.7×10^4	J.			
	С	The moment	tum of	the cyclist i	s 4×10^2	kgms ^{−1} .			
	D	The moment	tum of	the car is 2	\times 10 ⁵ kg	m s ^{−1} .			
									(O/N/2019/P12/Q.1)
6	Wł	nich expressio	n gives	an SI base	e quantity	y?			
	Α	charge per u	init time	е	С	mass per u	unit volur	ne	
	в	force per uni	t area		D	work done	per unit	distance	
									(O/N/2019/P12/Q.2)

2020

1 The table shows some measurable quantities. Which row gives the correct order of magnitude of the measurable quantity in the stated unit?

	measurable quantity	order of magnitude	unit
Α	mass of a coin	10 ⁻⁴	kg
В	thickness of a sheet of paper	10 ⁻²	m
С	weight of an apple	10 ⁰	Ν
D	temperature of a person's body	10 ¹	к

(F/M/2020/P12/Q.1)

DENTS RESOURCE

2 What is a reasonable estimate of the kinetic energy of a car travelling at a speed of 30 m s^{-1} ?

	Α	10 ² J	в	10 ⁴ J	С	10 ⁶ J	D	10 ⁸ J	(M/.1/2020/P11/Q 1)	
3	Wh	at is a reasonab	le es	timate of the ma	ass o	of a raindrop?			(1110/2020/111/4.1)	
	Α	10 ¹ kg	в	10 ⁻¹ kg	С	10 ⁻³ kg	D	10 ⁻⁵ kg		
4	A man is running a race in a straight line. What is an approximate value of his kinetic energy?								(M/J/2020/P12/Q.1)	
	Α	10 J	В	100 J	С	1000 J	D	10 000 J		
5	Wh	ich quantity is a	phys	ical quantity?					(M/J/2020/P13/Q.1)	
	A atomic number					number density of charge carriers				
	В	efficiency			D	strain			(O/N/2020/P11/Q.1)	
6	A st Wh	tudent uses the at is not needed	volur I in o	ne of a metal co rder to determin	oin in ne ar	order to determ estimate of the	ine t volu	he density of the me of the coin?	e metal.	
	Α	estimate of the	diam	neter	С	estimate of the thickness				
	В	estimate of the	mas	S	D	use of the form	ula fo	or the volume of	a cylinder	
									(O/N/2020/P12/Q.1)	
7	Wh	at is a reasonab	le es	timate of the vo	lume	e of a fully inflate	d sta	andard football?		
	Α	600 cm ³	В	6000 cm ³	С	$60000{\rm cm}^3$	D	$600000{\rm cm}^3$		
									(O/N/2020/P13/Q.1)	

1.1 Physical Quantities

				2	2021			
1	Wh	at is a reasonabl	e estir	nate for the dens	sity of s	and?		
	Α	$2 \times 10^2 g \text{cm}^{-3}$	В	$2\times10^3gcm^{-3}$	С	$2\times 10^1kgm^{-3}$	D	$2 imes 10^3$ kg m ⁻³
								(F/M/2021/P12/Q.1)
2	Wł	nat is a reasonabl	e estin	nate of the volum	e of an	adult person?		
	Α	0.10 m ³	В	0.50 m ³	С	1.0 m ³	D	2.0 m ³ (M/J/2021/P11/Q.1)
3	Wł	nat is not a reaso	nable e	estimate of the ph	nysical	property indicate	d?	
	Α	$2 \times 10^3 W$ for the	e powe	r dissipated by th	ne heat	ing element of a	n electr	ic kettle
	В	$4 \times 10^2 m^3$ for th	e volu	me of water in a s	swimmi	ng pool		
	С	$5 \times 10^5 \text{Ns}$ for th	ie mon	nentum of a lorry	moving	g along a road		
	D	$6 \times 10^2 \text{N}$ for the	weigh	t of a fully grown	raceho	orse		
			-					(M/J/2021/P12/Q.1)
4	Wh rac	nat is a reasonab ce?	le esti	mate of the kine	tic ene	rgy of an Olymp	oic athle	ete sprinting in a 100 m
	Α	40 J	В	400 J	С	4000 J	D	40 000 J
						_		(111/3/2021/F13/Q.1)
5	Wł	nat is essential wh	ien rec	ording a measure	ement	of a physical qua	intity?	
	Α	the measureme	nt has	an SI unit				
	В	the measureme	nt has	a unit and a num	nber			
	С	the measureme	nt has	a unit given as a	base u	nit		
	D	the measureme	nt is fro	om an analogue s	scale			
								(O/N/2021/P11/Q.1)
6	Wł	nich row shows w	nat all	physical quantitie	es must	have?		
					_			

	magnitude	direction	unit
Α	\checkmark	\checkmark	\checkmark
в	\checkmark	\checkmark	X
С	\checkmark	X	\checkmark
D	x	x	\checkmark

(O/N/2021/P12/Q.1)

7 A paperback book contains 210 sheets of paper (pages). Its thickness is measured with a ruler, as shown.

What is the average thickness of one sheet one sheet of the paper in the book?

- **A** 0.013 mm
- **B** 0.017 mm
- **C** 0.13 mm
- **D** 0.17 mm

1.1 Physical Quantities

				20)22) -		
1	Wh	ich term represents	a pl	nysical quantity?				
	Α	metre			С	quark flavour		
	В	percentage uncert	ainty	1	D	spring consta	ant	
								(M/J/2022/P11/Q.1)
2	Wh	ich estimate is reas	onal	ole?				
	Α	1×10^{-3} kg for the	mas	s of a grain of san	b			
	В	$1\times 10^{-2}m^3$ for the	volu	me of a tennis ball				
	С	1×10^{0} J for the wo	ork d	one lifting an appl	e fror	n waist height	to head h	eight
	D	$1 \times 10^4 W$ for the p	owe	r of a light bulb in a	a hou	se		
								(M/J/2022/P12/Q.1)
3	Wh	ich pair of quantities	s are	physical quantitie	s?			,
	Α	charge and amper	е		С	pascal and s	train	
	В	efficiency and kilog	gram	1	D	period and p	otential di	fference
								(M/J/2022/P13/Q.1)
4	Wh	at is needed to acc	urate	ely represent all ph	ysica	l quantities?		,
	Α	a base unit and a r	num	ber				
	В	a unit and a numb	er e>	pressed in standa	rd foi	rm (scientific n	otation)	
	С	a unit and a nume	rical	magnitude				
	D	an SI unit and a n	ume	rical magnitude				
								(O/N/2022/B11/O 1)
5	Wh	lich quantity is a phy	/sica	l quantity?				(U/N/2022/F11/Q.1)
	Α	flavour	в	kelvin	С	minute	D	potential difference
								(O/N/2022/P12/Q.1)
6	A ti	rain of mass 600 000) kg	moves with a spee	ed of	100 km h ⁻¹ .		· · · · ·
	Wh	iat is the order of ma	agnit	ude of the kinetic of	energ	y of the train?		
	Α	10 ⁶ J	В	10 ⁸ J	С	10 ¹⁰ J	D	10 ¹² J

(O/N/2022/P13/Q.1)

1.2 SI Units

2016

1	The prefixes nano (n), micro (μ) and pico (p) are often used with units.
	Which row shows their correct values?

	n	μ	р
Α	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²
В	10 ⁻⁶	10 ⁻¹²	10 ⁻⁹
С	10 ⁻⁹	10 ⁻⁶	10 ⁻¹²
D	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶

The SI unit of specific heat capacity is J kg⁻¹ K⁻¹.
 What is the unit of specific heat capacity expressed in SI base units?

Α	m s ⁻² K ⁻¹	В	kg m s ⁻¹ K ⁻¹	С	$m^2 s^{-2} K^{-1}$	D	$kg m^2 s^{-1} K^{-1}$
---	-----------------------------------	---	--------------------------------------	---	---------------------	---	------------------------

- 3 Which pair of quantities do **not** have the same SI base units?
 - A electromotive force and electric potential difference
 - B pressure and stress
 - **C** spring constant and moment of a force
 - **D** torque and work
- 4 The luminosity *L* of a star is given by

where

 $L = 4\pi r^2 \sigma T^4$

r is the radius of the star,

T is the temperature of the star,

 σ is a constant with units W m⁻² K⁻⁴.

What are the SI base units of L?

A $kg m^2 s^{-1}$ **B** $kg m^2 s^{-2}$

C kg m² s⁻³

(M/J/2016/P12/Q.2)

(F/M/2016/P12/Q.1)

(F/M/2016/P12/Q.3)

(M/J/2016/P11/Q.2)

- 5 Which list contains only SI base units?
 - A ampere, kelvin, joule, gram
- **C** metre, coulomb, second, kelvin

D ka $m^2 s^{-4}$

- B kilogram, newton, metre, ampere D second, kelvin, ampere, kilogram
 - (M/J/2016/P13/Q.1)
- **6** The stress σ needed to fracture a particular solid is given by the equation

$$\sigma = k \sqrt{\frac{\gamma E}{d}}$$
where *E* is the Young modulus, *d* is the distance between planes of atoms, and *k* is a constant with no units. What are the SI base units of γ ?
A kg m s⁻² **B** kg s⁻² **C** kg m s⁻¹ **D** kg s⁻¹ (M/J/2016/P13/Q.2)
IAHZAD ZIA 15

The force *F* between two point charges q_1 and q_2 , a distance *r* apart, is given by the equation 7

$$F = \frac{kq_1q_2}{r^2}$$

where *k* is a constant.

What are the SI base units of k?

B kg m³ s⁻⁴ A⁻² **C** kg m³ A² **A** kg m³ s⁻⁴ A² **D** kg m³ A⁻²

(O/N/2016/P13/Q.2) (O/N/2016/P11/Q.2)

The speed *v* of sound in a gas is given by the equation 8

$$v = \sqrt{\frac{\gamma P}{\rho}}$$

where *P* is the pressure of the gas, ρ is its density and γ is a constant. What are the SI base units of γ ?

A m ⁻¹ s B m ³ s ⁻³ C m ⁻⁴ s ⁻⁴ D no un	its
--	-----

(O/N/2016/P12/Q.2)

	Ľ
	~
A A A A A A A A A A A A A A A A A A A	
SIL	

2017

1 The speed *v* of a liquid leaving a tube depends on the change in pressure ΔP and the density ρ of the liquid. The speed is given by the equation $\left(\Delta P \right)^n$

$$\mathbf{v} = \mathbf{k} \left(\frac{\Delta \mathbf{P}}{\rho} \right)$$

where k is a constant that has no units. What is the value of n?

- **A** $\frac{1}{2}$ **B** 1 **C** $\frac{3}{2}$ **D** 2
- 2 What correctly expresses the volt in terms of SI base units?

A
$$A \Omega$$
 B $W A^{-1}$ **C** $kg m^2 s^{-1} A^{-1}$ **D** $kg m^2 s^{-3} A^{-1}$

- 3 Which expression using SI base units is equivalent to the volt?
 - **A** $kgm^2s^{-1}A^{-1}$ **B** $kgms^{-2}A$ **C** $kgm^2s^{-1}A$ **D** $kgm^2s^{-3}A^{-1}$
- 4 Which SI unit, expressed in base units, is not correct?
 - Aunit of force, kg m s⁻²Cunit of pressure, kg m⁻² s⁻²Bunit of momentum, kg m s⁻¹Dunit of work, kg m² s⁻²

5 Which pair of units are **not** the same when expressed in SI base units?

- A
 $m s^{-2}$ and $N kg^{-1}$ C
 Pa and $N m^{-2}$

 B
 Ns and kg m s^{-1}
 D
 V m^{-2} and N C^{-1}
- 6 The units of specific heat capacity are J kg⁻¹ K⁻¹.
 What are the SI base units of specific heat capacity?

A $ms^{-2}K^{-1}$ **B** $ms^{-1}K^{-1}$ **C** $m^2s^{-2}K^{-1}$ **D** $m^2s^{-1}K^{-1}$

(O/N/2017/P12/Q.3)

(O/N/2017/P13/Q.1)

 $\langle \rangle$

- 7 How many cubic nanometres, nm^3 , are in a cubic micrometre, μm^3 ?
 - **A** 10^3 **B** 10^6 **C** 10^9 **D** 10^{12}
- 8 The maximum theoretical power *P* of a wind turbine is given by the equation

$$P = k \rho A v^n$$

where ρ is the and <i>k</i> is a cons	density of air, A is t tant with no units.	he area swept by the	e turbine blades,	<i>v</i> is the speed of the air
What is the val	ue of n?			
A 1	B 2	C 3	D 4	(O/N/2017/P13/Q.2)

(M/J/2017/P11/Q.3)

(M/J/2017/P12/Q.3)

(M/J/2017/P13/Q.3)

(O/N/2017/P11/Q.1)

2018

С

D

watt per ampere

watt per volt

- 1 Which unit is equivalent to the coulomb?
 - Α ampere per second
 - В joule per volt
- Which row shows a quantity and an incorrect unit? 2

	quantity	unit
Α	efficiency	no unit
в	moment of force	$ m Nm^{-1}$
С	momentum	Ns
D	work done	J

- 3 What is a unit for stress?
 - **B** kg m⁻² s⁻² **C** N m⁻¹ **A** kg m⁻¹ s⁻² Nm D
- The drag coefficient C_d is a number with no units. It is used to compare the drag on different cars 4 at different speeds. C_d is given by the equation

 $C_{\rm d} = \frac{2F}{v^n \rho A}$

where *F* is the drag force on the car, ρ is the density of the air, *A* is the cross-sectional area of the car and v is the speed of the car. What is the value of *n*?

4

- **A** 1 В 2 **C** 3 D
- 5 When a beam of light is incident on a surface, it delivers energy to the surface. The intensity of the beam is defined as the energy delivered per unit area per unit time. What is the unit of intensity, expressed in SI base units?
 - **B** kg m² s⁻³ **C** kg s⁻² **A** $kg m^{-2} s^{-1}$ D kg s⁻³
- What is the unit of resistance when expressed in SI base units? 6

B kg m² s⁻³ A⁻² **C** kg m s⁻² A⁻¹ **D** kg m s⁻³ A⁻¹ **A** ka $m^2 s^{-2} A^{-1}$

- 7 Three of these quantities have the same unit. Which quantity has a different unit?
 - energy **B** force **C** power × time **D** rate of change of momentum Α distance (O/N/2018/P13/Q.2)

18

1.2 SI Units

(M/J/2018/P11/Q.1)

(F/M/2018/P12/Q.2)

(M/J/2018/P12/Q.2)

(O/N/2018/P11/Q.2)

(O/N/2018/P12/Q.2)

(F/M/2018/P12/Q.1)

1

2

3

2019

At f who The Wh	emperatures cleare <i>T</i> is the temperatures of the temperature of special structure of the special structure of the unit of the	lose ipera cific l cons	to 0 K, the spe ture and <i>b</i> is a heat capacity i stant <i>b</i> , expres	ecific he a consta s J kg ⁻¹ sed in	eat capacity <i>c</i> of ant, characterist K ⁻¹ . SI base units?	f a pa ic of	articular solid is the solid.	given by $c = bT^3$,
Α	$m^{2}s^{-2}K^{-3}$	в	$m^2 s^{-2} K^{-4}$	С	$kg m^2 s^{-2} K^{-3}$	D	$kg m^2 s^{-2} K^{-4}$	
								(F/M/2019/P12/Q.2)
Wh	ich unit can be	expr	essed in base	units a	$s kg m^2 s^{-2}?$			
Α	ioule	в	newton	С	pascal	D	watt	
	5							(M/J/2019/P11/Q.1)
The	e luminosity <i>L</i> o	f a st	tar is given by					
wh	ere			L =	$4\pi r^2 \sigma T^4$			
	<i>r</i> is the ra	dius	of the star,					
	<i>T</i> is the te	empe	rature of the s	tar and				
	σ is a con	stan	t with units Wr	$m^{-2} K^{-4}$.				
Wh	at are the SI ba	ase u	units of L?					
Α	kg m ² s ^{−1}	в	kg m ² s ⁻²	С	kg m² s ^{−3}	D	kg m ² s ⁻⁴	

4 What is the number of SI base units required to express electric field strength and power?

	electric field strength	power
Α	3	3
в	3	2
С	4	2
D	4	3

(M/J/2019/P12/Q.2)

(M/J/2019/P12/Q.3)

(M/J/2019/P11/Q.2)

5 The Planck constant *h* has SI units J s.

Which equation could be used to calculate the Planck constant?

A
$$h = \frac{DE}{v}$$
 where *D* is distance, *E* is energy and *v* is velocity

B
$$h = \frac{v}{D}$$
 where v is velocity and D is distance

C
$$h = \frac{1}{4\pi E}$$
 where *E* is electric field strength

D $h = \frac{Fr^2}{m}$ where *F* is force, *r* is radius and *m* is mass

SHAHZAD ZIA

Which is an SI base unit?

A current

6

The speed of a wave in deep water depends on its wavelength L and the acceleration of free fall g.

C kelvin

What is a possible equation for the speed *v* of the wave?

B gram

A
$$v = \sqrt{\left(\frac{gL}{2\pi}\right)}$$
 B $v = \frac{gL}{4\pi^2}$ **C** $v = 2\pi\sqrt{\left(\frac{g}{L}\right)}$ **D** $v = \frac{2\pi g}{L}$

- Which quantity with its unit is correct? 8
 - **A** acceleration of a bicycle = $1.4 \,\mathrm{m\,s^{-1}}$
 - **B** electric current in a lamp = 0.25 A s^{-1}
 - **C** electric potential difference across a battery = $8.0 \, \text{J} \, \text{C}^{-1}$
 - **D** kinetic energy of a car = 4500 N m^{-1}
- 9 Which two units are **not** equivalent to each other?
 - **A** Nm and kg $m^2 s^{-2}$ **C** Js^{-1} and kg m²s⁻³
 - **B** Ns and kg m s⁻¹ **D** Pa and kg m s⁻²

(O/N/2019/P13/Q.2)

MANE MEDUN

(O/N/2019/P13/Q.1)

(M/J/2019/P13/Q.1)

(O/N/2019/P11/Q.2)

D volt

2020

A byte (b) comprises 8 bits. 1 How many bits are there in 1 terabyte (1Tb)?

B 8×10^{9} **A** 1×10^{9} **C** 1×10^{12} **D** 8×10^{12}

(F/M/2020/P12/Q.2)

The frequency *f* of vibration of a mass *m* supported by a spring with spring constant *k* is given by 2 the equation

 $f = Cm^{p}k^{q}$

where *C* is a constant with no units.

What are the values of *p* and *q*?

	p	q
Α	$-\frac{1}{2}$	$-\frac{1}{2}$
в	$-\frac{1}{2}$	$\frac{1}{2}$
С	$\frac{1}{2}$	$-\frac{1}{2}$
D	<u>1</u> 2	$\frac{1}{2}$

(M/J/2020/P11/Q.2)

3 Which time interval is the shortest?

Α	0.05 ms	В	50 ns	С	500 000 ps	D	0.5
---	---------	---	-------	---	------------	---	-----

(O/N/2020/P11/Q.2)

μS

The speed *v* of waves on a stretched wire is given by the equation 4

$$v = T^{p}\mu^{q}$$

where T is the tension in the wire and μ is the mass per unit length of the wire. What are the values of p and q?

HAHZAD ZIA			21		SI	>
What is not an SI bas A coulomb B	se unit ^a kel ^y	? vin	C kilogr	am D	second	(O/N/2020/P12/Q.2) (O/N/2020/P12/Q.3)
	D	<u>1</u> 2	<u>1</u> 2			a Ch
	с	$\frac{1}{2}$	$-\frac{1}{2}$			
	в	$-\frac{1}{2}$	$\frac{1}{2}$			
	Α	$-\frac{1}{2}$	$-\frac{1}{2}$			
		р	q	_		

5

1.	Ph	ysical Quan	titie	es and Un	its						1.2 SI Units
					2	202	1				
1	Wh	nich physical qu	antity	/ could have	units of	N s²r	n ^{−1} ?				
	Α	acceleration		B force		С	mass		D	mome	ntum (F/M/2021/P12/Q.2)
2	W	hich combinatio	n of ı	units could be	used fo	or exp	pressing th	ie po	wer diss	sipated in	n a resistor?
	Α	newton per se	econo	d (N s ^{−1})		С	newton m	netre	(N m)		
	B newton second (Ns)					D	newton m	netre	per sec	ond (Nm	n s ^{−1})
											(M/J/2021/P11/Q.2)
3	W	hich quantity co	uld h	ave units of N	lmV ⁻¹ ?						
	Α	acceleration	E	B charge		С	current		D	resista	nce
											(M/J/2021/P12/Q.2)
4	VVI	nat is a unit of n	nome	entum?	_					4	
	Α	kgms⁻²	В	N s⁻'	С	Ns		D	kgsm		(M/ I/2021/P13/O 2)
E	ть	o mobility <i>u</i> of		tropo trovolli	na thro	uab	a motal a	andu	otor oor		culated using the
5	eq	uation μ of	elec		ng uno	ugn		Shuu			culated using the
					μ	$=\left(\frac{e}{n}\right)$	$\left(\frac{r}{r}\right)\tau$				
	wh of Wł	here e is the cha an electron with hat are the SI b	arge the ase t	on an electro atoms in the units of μ ?	n and <i>n</i> metal is	n is it: τ .	s mass. Tł	ne av	erage ti	me betw	veen the collisions
	Α	A kg ⁻¹	В	As^2kg^{-1}	С	As	kg ⁻¹	D	As ^{−2} k	g ⁻¹	(0/N/2021/P11/0 2)
_				r.			6 40 1				(0/14/2021/1711/0.2)
6	VVI	hat is an alterna	tive	way of expres	sing an	ener	gy of 43 d.	J?		2	
	Α	4.3 × 10 ³ mJ	В	$4.3 \times 10^{3} \text{MJ}$	C	4.3	× 10⁻³ mJ	D	4.3 × 1	10 ⁻³ MJ	(0/N/2024/D42/0 2)
7	W	hat is the unit of	resi	stance when	express	ed in	SI base u	inits?			(U/N/2021/F12/Q.2)
	Α	$kg^{-1}m^{-2}sA^{2}$	В	kg ⁻¹ m ⁻² s ³ A ²	2 C	kg n	$n^2 s^{-1} A^{-2}$	D	kg m² s	s ⁻³ A ⁻²	(O/N/2021/P13/Q.2)

					2	2022				
1	Wh	nat could not be	e a m	easurement of a	a phy	sical quantity?				
	Α	10 K	В	$11 J N^{-1} m^{-1}$	С	$17 Pa m^3 N^{-1}$	D	25	Tm	(F/M/2022/P12/Q.1)
2	A c The	computer memo e letter B stands	ory sti s for l	ck is labelled as byte, which is a	s hav unit.	ing a storage ca What is the equ	apaci uivale	ty of ent st	128 GB. orage capa	city?
	Α	$1.28 imes 10^8 \mathrm{B}$	В	$1.28\times10^{11}\text{B}$	С	$1.28 \times 10^{14} \mathrm{B}$		D	1.28×10^{1}	¹⁷ B
•							. .			(F/M/2022/P12/Q.2)
3	Wh	iich two units ar	e ide	ntical when exp	ress	ed in terms of S	l bas	e un	its?	
	Α	JC^{-1} and kg m	${}^{2}A^{-1}$	s ⁻²	С	Nm and kgm	° s ⁻			
	В	Js and kg m ² s	s ⁻¹		D	Ns and kgms	s ⁻³			(M/.I/2022/P11/Q 2)
4	Wh	nat is the symbo	ol for	the SI base unit	of te	emperature?				(
	Α	С	В	К	С	°C	D	°K		(M/J/2022/P12/Q.2)
5	Wh	nich list of unit p	refixe	es decreases in	mag	nitude from left	to rig	ht?		(
	Α	centi, deci, mi	lli		С	pico, kilo, milli				
	В	deci, milli, cen	ıti		D	kilo, milli, pico				(M/J/2022/P13/Q.2)
6	The at c	e drag coefficie different speeds	nt C_{d} s. C_{d} i	is a number wit s given by the e	th no equat	units. It is used	l to c	ompa	are the drag	g on different cars
					C	$_{\rm H} = \frac{2F}{v^n \rho A}$				
	wh car	ere <i>F</i> is the drag and <i>v</i> is the sp	g for eed o	ce on the car, $ ho$ of the car.	is th	e density of the	air, A	l is th	ne cross-seo	ctional area of the
	Wh	at is the value o	of <i>n</i> ?							
	Α	1	В	2	С	3	D	4		
										(M/J/2022/P13/Q.3)

7 A voltmeter connected across a resistor in a circuit reads 3.6 V.What could be the current in the resistor and the resistance of the resistor?

	current	resistance
Α	150 mA	0.24 kΩ
в	15 mA	2.4 kΩ
С	1.5 mA	0.24 MΩ
D	15 μA	240 k Ω

8 What is a power of 3.7 MW when expressed in kilowatts?

A 3.7×10^{-3} kW **B** 3.7×10^{-3} KW **C** 3.7×10^{3} kW

9 What are the SI base units of electromotive force (e.m.f.)?

B kg m² s⁻³ A⁻¹ **C** kg m² s⁻¹ A **A** kg m² s⁻¹ A⁻¹

D 3.7×10^3 KW (O/N/2022/P12/Q.2) D kg m s 3 A⁻¹ (O/N/2022/P13/Q.2)

(O/N/2022/P11/Q.2)

1.3 Errors and Uncertainties

2016

1	Qu	iantity 2	X has a fra	actio	nal uncer	tainty o	of <i>x</i> .	Quantity	Y has a	fra	ctional u	incertai	nty of <i>y</i> .
	Wł	nat is th	ne fraction	al ur	ncertainty	in $\frac{X}{V^2}$?						
	Α	x + y		в	<i>x</i> – <i>y</i>	I	С	x + 2y		D	x – 2y		
													(F/M/2016/P12/Q.4)
2	Wł In v	nen per which c	forming a case is the	n ex e stu	periment, dent redu	a stuc cing th	lent ie sy	should m stematic	inimise f error in	the a m	uncerta neasurer	inty of a ment?	any measurement.
	Α	adjus poter	ting a vo tial differe	oltme ence	ter need	le poir	nter	to the z	zero pos	sitio	n befor	e using	g it to measure a
	в	meas	suring the	dian	neter of a	wire a	t sev	veral poir	its and o	rier	ntations		
	С	meas	suring the	mas	s of 100 p	paperc	lips t	to detern	nine the r	mas	ss of one	e paper	clip
	D	timing	g 20 oscill	atior	ns of a ma	ass on	a sp	ring to d	etermine	the	e period	of one	oscillation
													(M/J/2016/P11/Q.4)
3	A r	netre ri	ule is sup	porte	d horizor	ntally b	y two	o pivots a	as showr	۱.			
									_Y				
				$\overline{\sum}$				····				7	
				Δ			-						
	Th	e vertic	al displac	eme	nt y at the	e centr	e of	the rule	s given t	by t	he equa	ition	
							y :	$= \frac{KML^3}{Wt^3}$					
	wh	ere						W					
		k	is a cons	stant,	1				t is the	thic	kness o	of the ru	le and
	L is the distance between the piv							S,	w is the	e wi	dth of th	e rule.	
	<i>M</i> is the mass of the rule,												
	In a	an expe	eriment, tl	he fo	llowing re	esults a	are o	btained:					
		L	. = (80.0 ±	± 0.2)cm			<i>t</i> = (6.0) ± 0.1) n	۱m			
		٨	$M = (60 \pm$	1)g				w = (2	3.0 ± 0.5)m	m.		
	Wł	nich me	easureme	nt co	ntributes	most t	o the	e uncerta	inty in th	e c	alculate	d value	of y?
	Α	L		в	М		С	t	-	D	W		-
							-						(M/J/2016/P13/Q.4)
4	As	student	determin	es th	e density	ho of st	teel	by taking	measur	em	ents fror	n a ste	el wire.
		n	nass <i>m</i> =	6.2 ±	±0.1g								
	length l = 25.0 \pm 0.1 cm												
	diameter $d = 2.00 \pm 0.01$ mm												
	He uses the equation $\rho = \frac{4m}{\pi d^2 l}$.												
	Wł	nat is th	ne percen	tage	uncertain	ity in h	is ca	lculated	value of	der	nsity?		
	Α	1.1%		В	1.8%		С	2.5%		D	3.0%	~~~	
												- Andrewski - A Andrewski - Andrewski - Andr	(₩/ <i>J</i> /∠010/ℙ12/Q.3)
SF			ZIA					24			Ć		
												\sim	

5 A voltmeter gives readings that are larger than the true values and has a systematic error that varies with voltage.

Which graph shows the calibration curve for the voltmeter?

- 6 A value for the acceleration of free fall on Earth is given as (10 ± 2) m s⁻². Which statement is correct?
 - A The value is accurate but not precise.
 - **B** The value is both precise and accurate.
 - **C** The value is neither precise nor accurate.
 - **D** The value is precise but not accurate.

(O/N/2016/P12/Q.5)

(O/N/2016/P12/Q.6)

7 An experiment to determine atmospheric pressure *P* uses the equation $P = \rho gh$ where

 $\rho = (13\,600 \pm 100) \,\text{kg m}^{-3},$ $g = (9.81 \pm 0.02) \,\text{m s}^{-2},$ $h = (0.762 \pm 0.005) \,\text{m}.$

What is the value of *P*, with its uncertainty, when stated to an appropriate number of significant figures?

- **A** $(1.0166 \pm 0.0162) \times 10^5$ Pa
- **B** $(1.017 \pm 0.016) \times 10^5$ Pa
- **C** $(1.017 \pm 1.6\%) \times 10^5$ Pa
- **D** $(1.02 \pm 0.02) \times 10^5$ Pa

SHAHZAD ZIA