A LEVEL 9618

COMPUTER SCIENCE Paper 3 Topical

WITH MARK SCHEME

JUNE 2015 – JUNE 2022

Compiled By:

FAWAD KHAN

LGS, BSS, ISL

Contact: 0321-6386013

STUDENTS RESOURCE

Airport Road: Shop 23-24, Basement Faysal Bank, Near Yasir Broast, Airport Road, Lahore.

Mob: 0321-4567519 **Tel:** 042-35700707

DHA Ph-V:Plaza No. 52-CCA, Ph-5
DHA Lahore Cantt.

Mob: 0321-4924519 **Tel:** 042-37180077

Johar Town :

Opp. Beaconhouse JTC Adjacent Jamia Masjid PIA Society Shadewal Chowk, Johar Town Lahore.

Mob: 0313-4567519 **Tel:** 042-35227007

Bahria Town:

70 - Umer Block Main Boulevard Commercial Area Bahria Town Lahore.

Mob: 0315-4567519 **Tel:** 042-35342995

Book Title: A Level Ô[{] * c^\ ÂÛ&\ 2^\ Y Topical Paper H

Book Code Jî 1ì

Edition: G€G

Compiled By: Øæ; æå ÁS @æ; ÁLGS ÉÓÙÙ ÉÑÛŠ)

Years Range: 20FÍ -20GG

Syllabus: Latest 202H-202Í Syllabus

Published by: STUDENTS Airport Road 0423-5700707

Price: GJ50/-

COPYRIGHT ©STUDENTS RESOURCE®202'

The rights of Students Resource being Publisher of this book has been asserted by him in accordance with the Copy Right Ordinance 1962 of Pakistan.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Students Resource or under licence from the Registrar Copyright from Intellectual Property Organization Pakistan.

The syllabus contents and questions from past papers used herein are the property of Cambridge Assessment International Education (CAIE). The use of syllabus and questions from past papers used in this book does not west in the author or publisher any copyright ownership, nor does the use of CAIE material imply any affiliation with CAIE.

Any individual or institution violating the copyrights will be prosecuted in the court of law under the lex-fori of Pakistan at his/their expense.

No further notes and legal warning would be issued for any kind of legal activity.

Legal Advisor

Content

Topic 1: Data Representation	6
Topic 2: Communication & Internet Technologies	78
Topic 3: Hardware & Virtual Machines	120
Topic 4: System Software	207
Topic 5: Security	282
Topic 6: Computational Thinking & Problem-Solve	331
Topic 7: Further Programming	486
2022 Past Exams Papers	736

Topic 1

Data Representation

9618 Computer SCIENCE Topical Paper 3

> Fawad Khan 03216386013

In this Unit

You will practice the following topics:

- 1.1 User-defined Data Types
- 1.2 File Organisation & Access
- 1.' Floating-point Numbers, Representation & Manipulation

Topic 1: Data Representation

1 9608/32/M/J/15/Q3

(a) A particular programming language allows the programmer to define their own data types.

ThisDate is an example of a user-defined structured data type.

```
TYPE ThisDate

DECLARE ThisDay : (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)

DECLARE ThisMonth : (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)

DECLARE ThisYear : INTEGER

ENDTYPE
```

A variable of this new type is declared as follows:

(b) Annual rainfall data from a number of locations are to be processed in a program.

The following data are to be stored:

- location name
- height above sea level (to the nearest metre)
- total rainfall for each month of the year (centimetres to 1 decimal place)

A user-defined, composite data type is needed. The programmer chooses ${\tt LocationRainfall}$ as the name of this data type.

A variable of this type can be used to store all the data for one particular location.

(i)	Write the definition for the data type LocationRainfall.
		[5]
(i	i)	The programmer decides to store all the data in a file. Initially, data from 27 locations will
(ι	',	be stored. More rainfall locations will be added over time and will never exceed 100.
		The programmer has to choose between two types of file organisation. The two types are serial and sequential.
		Give two reasons for choosing serial file organisation:
		[2]
		articular programming language allows the programmer to define their own data types.
		example of a user-defined data type for an address is:
ŗ	ГҮЕ	PE ThisAddress DECLARE ThisHouseNo : INTEGER DECLARE ThisStreet : STRING
]	ENI	DECLARE ThisTown : STRING DTYPE
,	A v	ariable of this new type is declared as follows:
]	DEC	CLARE HomeAddress : ThisAddress
((i)	Write the statement that assigns the house number 34 to HomeAddress.
		[1]

	(ii)	The type definition for ThisAddress is to be changed.
		Rewrite one line from the definition for each of the following changes.
		House numbers are in the range from 1 to 10.
		DECLARE
		The possible towns are limited to: Brightown, Arunde and Shoram.
		DECLARE[2]
(b)	Ter	nperature data from a number of weather stations are to be processed by a program.
	The	e following data are to be stored:
	•	weather station ID (a unique four-letter code)
	•	latitude (to 2 decimal places)
	•	average temperature (to the nearest whole number) for each year from 2001 to 2015 inclusive
		programmer designs a composite data type WeatherStation. A variable of this type can used to store all the data for one particular station.
	(i)	Write the definition for the user-defined data type WeatherStation.
		[5]
	(ii)	The programmer decides to store all the data in a file. The number of weather stations could grow to reach 20000, but not all stations will be present at first.
		The programmer decides on random organisation for the file.
		Describe three steps which show how a new weather station record is added to the file.
		1
		2

			3														[3]
3			/O/N/1 icular		uter sy	ystem	, real	numbe	ers ar	re stor	ed usi	ng flo	ating- _l	ooint r	epres	entatio	on with:
	•		ts for t ts for t				wed b	ру									
	Tw	o's co	mplen	nent fo	orm is	used	for bo	th ma	ntissa	a and	expon	ent.					
	(a)	(i)	A rea	ıl num	ber is	stored	d as th	ne follo	owing	j two b	ytes:						
				Man	tissa								Expo	onent			
	0	0	1	0	1	0	0	0		0	0	0	0	0	0	1	1
		(ii)		ain wh				JP	ıber iı	n part							[3]
		(iii)	Norm		the flo	ating-	point	numbe	er in	part (a				onent			[2]
																	•
	(b)	(i)		oer in t	this fo		itive n	umbe	r tha	t can	be w	ritten			alised	floati	[2] ng-point
Г				Man	tissa]				⊨xpo	onent	\@		
															JE [[2]		

(ii)	Write the	smallest	positive	number	that	can	be	written	as	а	normalised	floating	-point
	number in	this form	nat.										

Mantissa										Exponent							
																	2]

(iii)	If a positive number is added to the number in part (b)(i) explain what will happen.
	[2

(c) A student writes a program to output numbers using the following code:

$$X \leftarrow 0.0$$
FOR $i \leftarrow 0$ TO 1000
 $X \leftarrow X + 0.1$
OUTPUT X
ENDFOR

The student is surprised to see that the program outputs the following sequence:

0.0 0.1 0.2 0.2999999 0.3999999 ...

Explain why this outpu	it has occurred.		

4 9608/32/O/N/15/Q1

In a particular computer system, real numbers are stored using floating-point representation with:

- 8 bits for the mantissa, followed by
- 4 bits for the exponent

Two's complement form is used for both mantissa and exponent.

Two's complement form is used for both mantissa and exponent.

(a) (i) A real number is stored as the following 12-bit binary pattern:

	0	1	1	0	1	0	0	0		0	0	1	1	
	Calc	ulate	the de	nary v	/alue o	of this	numb	er. Sh	ow yo	ur wo	rking.			
)	Give	the r	ormal	ised b	inary _I	patter	n for +	-3.5. S	Show y	our w	orking	ļ .		
									XX					
								4						
							\bigcirc							
						71								
				\										
)	Give	the r	ormal	ised b	inary	patter	n for –	-3.5. S	show y	our w	orking			

The number of bits available to represent a real number is increased to 16.

(b)	(i)	If the system were to use the extra 4 bits for the mantissa, state what the effect would be on the numbers that can be represented.
		[41]
	(ii)	If the system were to use the extra 4 bits for the exponent instead, state what the effect would be on the numbers that can be represented.
		[1]
(c)	A st	cudent enters the following expression into an interpreter:
		OUTPUT (0.1 + 0.2)
	The	student is surprised to see the following output:
	0.30	000000000001
	Ехр	lain why this output has occurred.
		. 1/2
		[3]

[4]

5 9608/32/M/J/16/Q4

(a) Three file organisation methods and two file access methods are shown below.

Draw lines to link each file organisation method to its appropriate file access method or methods.

File organisation method	File access method
serial	direct
sequential	sequential
random	

- (b) A bank has a very large number of customers. The bank stores data for each customer. This includes:
 - unique customer number
 - personal data (name, address, telephone number)
 - transactions

The bank computer system makes use of three files:

- A a file that stores customer personal data. This file is used at the end of each month for the production of the monthly statement.
- B a file that stores encrypted personal identification numbers (PINs) for customer bank cards. This file is accessed when the customer attempts to withdraw cash at a cash machine (ATM).
- C a file that stores all customer transaction records for the current month. Every time the customer makes a transaction, a new record is created.

For each of the files A, B and C, state an appropriate method of organisation. Justify your choice.

(i)	File A organisation
	Justification
	[3

(ii)	File B organi	sation									
	Justification .										
(!!!\	5 'l. 0										
(iii)	File C organi										
	Justification .										
								•••••			••••
					2	7					-[-]
	1/O/N/16/Q1 rticular comput	er system,	real numb	ers are st	red us	ing floati	ng-poii	nt rep	resenta	ition w	/ith:
	bits for the ma			1		3	3111				
• 4 b	oits for the expo o's complemen	onent	oth mantis	ssa and ex	ponent						
			N	\ '							
(a) Ca	alculate the floa		>	tion of +2.	5 in thi	s system	ı. Shov			g.	
		Man	tissa					Expo	nent		
	•										
	•										
	•										
)										
	•										
											[3]

(b) Calculate the floating-point representation of -2.5 in this system. Show your working.

•						tissa									onent	•	
)																
												J					J
••••																	•••
••••																	
••••																	
••••		•••••	•••••	•••••													•••
Fin	d the	e den	ary va	alue f	or the	follo	wing	binary	y float	ing-p	oint r	umb	er. Sh	ow y	our w	orking	ე.
					Man	tissa				X	> '			Ехро	onent	İ	
0	0	1	1	0	0	0	0	0		0	0]	0	0	1	1]
		Δ.							1					U			
							1.										
						>											
••••								• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •					
	Sta			r the 1	floatin												
 (i)	Sta	te wh	nethe	r the f	floatin		nt nu	mber	given	in p a	art (c) is no	rmal	ised (or not	norm	al
 (i)	Sta		 	r the 1	floatin		nt nu	mber	given	in p a	art (c) is no	rmal	ised (or not		ali
 (i)					floatin		nt nu	mber	given	in p a	art (c) is no	rmal	ised (or not	norm	ali
							nt nu	mber	given	in p a	art (c) is no	rmal	ised (or not	norm	ali
							nt nu 	mber d)(i).	given	in pa	art (c) is no	ormal	ised (or not	norm	ali

(e)	The system changes so	that it now allo	cates 8 bits t	o both the	mantissa	and the	exponent.	
	State two effects this ha	as on the numbe	ers that can I	oe represe	nted.			
	1							
	2							
							[2]
	8/32/O/N/16/Q1 particular computer sys	tem real numbe	ers are store	d usina flas	atina-noin	t renreser	ntation with	h.
•	8 bits for the mantissa	iom, real nambe		a doing not	ating poin	торгозог	itation witi	••
•	8 bits for the exponent							
•	two's complement form	for both mantiss	sa and expor	nent				
				M				
(a)	Calculate the floating pe	oint representati	on of +3.5 ir	this syste	m. Show	your work	ing.	
_	Mantissa		一下	E	xponent			
	•							
		NP						
			•••••					
								•••
								•••
			•••••					
								•••
							[3]
(b)	Calculate the floating-p	oint representati	on of –3.5 ir	this syste	m. Show	your work	ing.	
	Mantissa			E	xponent			
	•							
						·		, ,
							26(0)(1)(5)(7)	~
						~W.S.M		•••

0	• 1	1	1	otissa 0	0	0	0]				Exp	onent				
	_T								0	0	0	0	0	1	0	0]
																	J
		•••••											•••••		•••••		
			•••••								•				•••••		
						•••••						3					
										2.							
										XI							
((ii) J	ustify y	our a	answe	r give	en in I	oart (d)(i) .									
						<u> </u>											
(a)	C:	مناء ما	~ <i>w</i> . t	, a'a aa				un fo	مطاء		i	م ما ممی	ملائد د بر	امطا			:1
(e) (Give t	he bin	-	vos co I tissa	mpie	emen	patte	ern toi	tne r	negati	ive ni		r with onent		arges	mag	Init
			IVIAII	 		1	1	1				Exp	T		1		7
	lack																
			1			1		1			1	1			1	1	J

	(ii)	Write a pseudocode statement that assigns 'Dune' to the \mathtt{Title} of \mathtt{Book} .
		[1]
(b)		user-defined data type LibraryBookRecord needs to be modified by adding the wing fields:
	•	a field called Genre which can take two values, fiction or non-fiction a field called NumberOfLoans which can be an integer value in the range 1 to 99
	Writ	e the updated version of LibraryBookRecord.
		4
		[3]
		······································

(c) A pointer is a variable that stores the address of a variable of a particular type.

Consider the code on page 3, which uses the following identifiers:

Identifier	Data type	Description
IntPointer	^INTEGER	pointer to an integer
IntVar	INTEGER	an integer variable
Temp1	INTEGER	an integer variable
Temp2	INTEGER	an integer variable

The four assignment statements are executed. The diagram shows the memory contents after execution.

Variable	Memory address	Contents
	8217	
IntVar	8216	88
	8215	
	8214	
	7307	
IntPointer	7306	8216
	7305	
		4
	6717	
Temp1	6716	88
Temp2	6715.	57
	6714	
5	1 /	7

Use the diagram to state the current values of the following expressions:

- - (iii) Copy the value in Temp2 into the memory location currently pointed at by IntPointer.
 - _____[1]

.....[1]

9 9608/32/M/J/17/Q1

(a) Consider the following pseudocode user-defined data type:

TYPE MyContactDetail DECLARE Name : STRING DECLARE HouseNumber : INTEGER ENDTYPE Write a pseudocode statement to declare a variable, NewFriend, of type MyContactDetail. (ii) Write a pseudocode statement that assigns 129 to the HouseNumber of NewFriend. (b) The user-defined data type MyContactDetail needs to be modified by: adding a field called Area which can take three values, uptown, downtown or midtown amending the field HouseNumber so that house numbers can only be in the range 1 to 499. Write the updated version of MyConta taĭl.

(c) A pointer is a variable that stores the address of a variable of a particular type.

Consider the pseudocode on page 3, which uses the following identifiers:

Identifier	Data type	Description
IPointer	^INTEGER	pointer to an integer
Sum	INTEGER	an integer variable
MyInt1	INTEGER	an integer variable
MyInt2	INTEGER	an integer variable

The four assignment statements are executed. The diagram shows the memory contents after execution.

Use the diagram to state the current values of the following expressions:

(i)	IPointer	[1]
(ii)	IPointer^	
	@MyInt1	
	<pre>IPointer^ = MyInt2</pre>	

(a)	vvri	te pseudocode statements that will achieve the following:
	(i)	Place the address of MyInt2 in IPointer.
		[1]
	(ii)	Assign the value 33 to the variable MyInt1.
		[1]
((iii)	Copy the value in $MyInt2$ into the memory location currently pointed at by IPointer.
		[1]

10 9608/32/M/J/17/Q4

(a) Three file organisation methods and two file access methods are shown below.

Draw lines to link each file organisation method to its appropriate file access method(s).

(b) An energy company supplies electricity to a large number of customers. Each customer has a meter that records the amount of electricity used. Customers submit meter readings using their online account.

The company's computer system stores data about its customers.

This data includes:

- account number
- personal data (name, address, telephone number)
- meter readings
- username and encrypted password.

[4]

Justify your choice.

The computer system uses three files:

File	Content	Use
А	Account number and meter readings for the current month.	Each time a customer submits their reading, a new record is added to the file.
В	Customer's personal data.	At the end of the month to create a statement that shows the electricity supplied and the total cost.
С	Usernames and encrypted passwords.	When customers log in to their accounts to submit meter readings.

For each of the files A, B and C, state an appropriate file organisation method for the use given in the table.

All three file organisation methods must be different.

(i)	File A organisation	
	Justification	
(ii)	File B organisation	
	Justification	
iii)	File C organisation	
	Justification	
		[3.
		. و

11 9608/31/M/J/18/Q1

In a computer system, real numbers are stored using normalised floating-point representation with:

- 12 bits for the mantissa
- 4 bits for the exponent
- Two's complement form for both mantissa and exponent.
- (a) Find the denary value for the following binary floating-point number.

					Mar	itissa	l									Exp	onen	t	
1	0	1	1	1	0	0	1	1	0	1	0				0	1	0	1	
	Shov	v you	ır wo	rking) .														•
	Work	ing .																	
												1.							
	Ansv	ver						7)									[3]
							1.	1											[J]
b)	Calcı work	ulate ing.	the	norr	malis	sed fi	oatir	ig-pc	oint r	epre	senta	tion	of 5	5.25 in	this	syste	m. S	Show	your
	Work	ing .																	
					Man	ntissa	1									Ехр	onen	t	
	1			-	-			1	'	-									1000

[3]

	(c)	The size of the mantissa is decreased and the size of the exponent is increased.
		State how this affects the range and precision of the numbers that the computer system can represent.
		[2]
12		8/31/M/J/18/Q2 rogrammer uses non-composite and composite data types to create a program.
	(a)	Define the term non-composite data type .
		[1]
	(b)	Describe two different non-composite data types.
		Data type 1
		Description
		<u> </u>
		Data type 2
		Description
		[4]
	(c)	Define the term composite data type.

	(d)	Des	cribe two different composite data types.
		Dat	a type 1
		Des	cription
		Dat	a type 2
		Des	cription
			[2
13	960	8/32	/M/J/18/Q1
			es can be defined in a programming language.
	The	data	type, StudentRecord, is defined by the code.
	TYE	DEC: DEC: DEC:	tudentRecord LARE StudentID : INTESER LARE StudentFirstName : STRING LARE StudentSurname : STRING LARE StudentDOB : NATE LARE StudentCourse : ARRAY[1:10] OF STRING
	ENI	DEC.	
	A va	ariab	e, CollegeStudenc, is declared with the code:
		DEC	LARE CollegeStudent : StudentRecord
	(a)	Writ	e a pseudocode statement to assign 6539 to the StudentID of CollegeStudent.
			[1
	(b)	The	type definition for StudentRecord is changed.
		(i)	Students can take six courses from: Computer Science, Engineering, Science, Maths Physics, Chemistry, Music, Drama and English Language.
			Rewrite one line from the type definition of StudentRecord to implement the change.
			DECLARE
			C. B. Mar.
			rs

	(ii)	The values for the field StudentID must be between 1 and 8000 inclusive.
		Rewrite one line from the type definition of StudentRecord to implement the change.
		DECLARE[1]
(c)	-	programmer is asked to write a program to process the assessment data for each student. Idents sit one exam in every course they take.
	A c	composite data type, StudentAssessment, needs to be defined with the following three ds.
	•	a student assessment code (a unique code of three letters and two digits) the marks for the six exams the average mark of the six exams
	(i)	Write pseudocode to define the data type StudentAssessment.
		[4]
	(ii)	Data about all students and their assessments are stored in a file that uses random organisation. The StudentID is used as the key field.
		The program allows a user to enter data for a new student.
		Explain how the program adds the new data to the file.
		[3]

14 9608/32/M/J/18/Q3

In a computer system, real numbers are stored using normalised-floating point representation with:

- 8 bits for the mantissa
- 4 bits for the exponent
- two's complement form for both mantissa and exponent.

	rking	
		4
	Mantissa	Exponent
) Find	d the denary value for the following binary floating Mantissa	g-point number. Exponent
	1 0 1 1 0 0 0 0	1 1 1 0
Sho	ow your working.	
Wo	rking	

1	5	9	60	18	/31	IO.	/N	/1	8/	വ	1

Consider the following user-defined data type.

TYPE Book

DECLARE ISBN : INTEGER
DECLARE Author : STRING
DECLARE Title : STRING

DECLARE Supplier: (Amazone, Stones, Smiths, Blackwalls, Greens,

Coals, Boarders)

ENDTYPE

(a)	Name	the	data	type	of	Вос) k
-----	------	-----	------	------	----	-----	-----

 	 [1]

(b) Name the non-composite data type used in the ${\tt Supplier}$ declaration.

	[1]

(c) (i) Write a pseudocode statement to declare a variable, BestSeller, of type Book.

[1	11

(ii) Write a pseudocode statement to assign Vohn Williams" to the author of BestSeller.

V	[1]
	[.]

16 9608/31/O/N/18/Q2

- (a) A computer system stores real numbers using floating-point representation. The floating-point numbers have:
 - eight bits for the mantiss
 - four bits for the exponent.

The mantissa and exponent are both in two's complement form.

Mantissa

(i) Calculate the denary value of the following floating-point number.

0 0	1 1	. 1	0	0	0	0	1	1	1	
Show you	r worki	ng.								
Working .						 				
						 				Alon.
						 				9[50](h)
Answer) _{///}

Exponent

	(ii)	State how you know the floating-point number i	n part (a)(i) is not normalised.
			[1]
	(iii)	Normalise the floating-point number in part (a)(i).
		Mantissa	Exponent
			[2]
(b)	(i)	Write the largest positive number that this s floating-point number in this format.	system can represent as a normalised
		Mantissa	Exponent
			[2]
	(ii)	Write the smallest positive number that can the number in this format.	e stored as a normalised floating-point
		Mantissa	Exponent
			[2]
(c)	The	number of bits available to represent a real num	
		te the effect this has on the numbers that can be d in the:	represented, if the additional four bits are
	(i)	mantissa	
			[1]
	(ii)	exponent	
			[1]
(d)	A st	audent enters the following code into an interprete	er.
		X = 0.1	
		Y = 0.2 Z = 0.3	
		OUTPUT (X + Y + Z)	
	The	student is surprised to see the output:	The part of the pa

0.60000000000000001

(a)

	Ex	plai	n wh	y this	is o	utput													
																			[3]
(a)	A	com	/N/18 outer rs ha	syste	em u	ses f	loatii	ng-po	oint r	epre	senta	ition '	to sto	ore re	eal nu	umbe	ers. T	he flo	pating-point
	•			for th									7	7					
	Th	ie m	antis	sa ar	nd ex	pone	ent a	re bo	oth in	two	's co	nple	meni	forn	٦.				
	(i)		alcul rm.	ate th	ne de	enary	valu	ie of	the 1	folloy	ving	lloati	ng-p	oint ı	numb	oer. It	t is n	ot in	normalised
					Man	tissa	l		<	\bigcirc)			Ехро	onen	t			
		0	0	1	0	1	0	R	18		0	0	0	0	0	1	0	1	
		S	how	your	work	ing	P	"											
		W	orkir/	ng			.												
		Α	nswe	er															
																			[3]
	(ii)	С	onve	rt the	den	ary r	numb	er +	7.5 iı	nto a	norr	nalis	ed flo	oatin	g-poi	int nu	ımbe	er.	
		S	how	your	work	ing.													and ling E
					Man	tissa	l							Expo	onen	t		E OK	
																		10	

	W	orkir/	ng																
																		[3	
(iii)	С	onve	rt the	e den	ary r	numb	er –	7.5 i	nto a	norn	nalis	ed flo	ating	g-poi	nt nu	mbe	r.		
	S	how	your	work	ing.														
				Man	tissa	1						ı	Expo	nen	t				
	W	/orkir	าต						_				7					_	
											1								
												•							
										X									
								P	Y										
۸ ۰	0.00	aalia	ad fla	otino	, noi			1 ,	hove	•								[3	J
Αï	IOITI	nalise		Man		11.116	mpe	r is s	nowi	1.			Expo	non					
Γ	0	1			<u> </u>	1	1	1]		1					1	1]	
L	0	1	1	1	1	1	1	1		0	1	1	1	1	1	1	1		
(i)	S	tate t	he si	gnifi	canc	e of t	this b	inary	y nun	nber.									
																		[1]
(ii)	S	tate \	what	will r	nappe	en if	a po	sitive	num	nber i	s ad	ded t	o this	s nur	nber	•			
	••) >
																	\@\(

(b)

18 9608/31/M/J/19/Q1

In a computer system, real numbers are stored using normalised floating-point representation with:

- twelve bits for the mantissa
- four bits for the exponent.

The mantissa and exponent are both in two's complement form.

(a) Calculate the denary value for the following binary floating-point number.

Show your working.

					Man	tissa	1									Expo	onen	t
1	0	0	1	0	1	1	1	0	0	1	1				0	1	1	1
١	Work	ing .											7					
											Y							
	Δηςι	ver						11										
,	Allov	vei					1	1	•									
. (Calci	ulate	the i	norm	nalise	d flo	atino	ı-noir	nt rer	rese	ntati	n of	± 1 56	25 in	thic c	veter	m	
		aiato	1110	10111	ianoc	110	amig	pon	10,10,	,,,,,,,	iiiaii	11 01	11.00	20 111	11100	yotoi		
•	SHUV	v vol	ır wo	rkind	٦.													
		v you king .																
). 													
																Expo	onen	t
																Expo	onen	t

	Mantissa	Exponent
		•
		[2]
(ii	Write the smallest non-zero positive number that of floating-point number using this format.	an be stored as a normalised
	Mantissa	Exponent
		[2]
st to	ne developer of a new programming language decides the pred using 20-bit normalised floating-point representation, use for the mantissa and how many bits for the exponent applicable to the trade-off between using either a large number of many bits for the exponent.	She must decide how many bits
	•	[3]
) A	2/M/J/19/Q1 computer stores real numbers using floating-point rembers have:	presentation. The floating-point
•	eight bits for the mantissa four bits for the exponent.	
TI	ne mantissa and exponent are both stored in two's comple	ment format.
(i	Calculate the denary value of the following floating-poin	nt number.
	Show your working.	Exponent
		~(U///)//,

	Working							
	Answer							
(ii)	State why the floating-point number in part (a)(i) is not normalised							
		[1]						
(iii)	Give the floating-point number in part (a)(i) in normalised two's cor	nplement format.						
	Mantissa Expone	ent						
		[2]						
(b) (i)) Convert the denary number +11 625 into a normalised floating-point	nt number						
(-)	Show your working.							
	Working							
	Working							
	Mantissa Expon	Exponent						
		[3]						